The Packing/Covering Conjecture was introduced by Bowler and Carmesin motivated by the Matroid Partition Theorem of Edmonds and Fulkerson. A packing for a family (Mi:i∈Θ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({M_i}:i \\in \\Theta)$$\\end{document} of matroids on the common edge set E is a system (Si:i∈Θ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({S_i}:i \\in \\Theta)$$\\end{document} of pairwise disjoint subsets of E where Si is panning in Mi. Similarly, a covering is a system (Ii: i ∈ Θ) with ∪i∈ΘIi=E\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\cup _{i \\in \\Theta}}{I_i} = E$$\\end{document} where Ii is independent in Mi. The conjecture states that for every matroid family on E there is a partition E=Ep⊔Ec\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$E = {E_p} \\sqcup {E_c}$$\\end{document} such that (Mi↾Ep:i∈Θ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({M_i}\\upharpoonright{E_p}:i \\in \\Theta)$$\\end{document} admits a packing and (Mi.Ec:i∈Θ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({M_i}.{E_c}:i \\in \\Theta)$$\\end{document} admits a covering. We prove the case where E is countable and each Mi is either finitary or cofinitary. To do so, we give a common generalisation of the singular matroid intersection theorem of Ghaderi and the countable case of the Matroid Intersection Conjecture by Nash-Williams by showing that the conjecture holds for countable matroids having only finitary and cofinitary components.
Read full abstract