In many digital signal precessing systems, e.g., vacoders, modulation systems, and digital waveform coding systems, it is necessary to alter the sampling rate of a digital signal Thus it is of considerable interest to examine the problem of interpolation of bandlimited signals from the viewpoint of digital signal processing. A frequency dmnain interpretation of the interpolation process, through which it is clear that interpolation is fundamentally a linear filtering process, is presented, An examination of the relative merits of finite duration impulse response (FIR) and infinite duration impulse response (IIR) digital filters as interpolation filters indicates that FIR filters are generally to be preferred for interpolation. It is shown that linear interpolation and classical polynomial interpolation correspond to the use of the FIR interpolation filter. The use of classical interpolation methods in signal processing applications is illustrated by a discussion of FIR interpolation filters derived from the Lagrange interpolation formula. The limitations of these filters lead us to a consideration of optimum FIR filters for interpolation that can be designed using linear programming techniques. Examples are presented to illustrate the significant improvements that are obtained using the optimum filters.
Read full abstract