Abstract Since mid-February 2013, the ensemble Kalman filter (EnKF) in operation at the Canadian Meteorological Centre (CMC) has been using a 600 × 300 global horizontal grid and 74 vertical levels. This yields 5.4 × 107 model coordinates. The EnKF has 192 members and uses seven time levels, spaced 1 h apart, for the time interpolation in the 6-h assimilation window. It follows that over 7 × 1010 values are required to specify an ensemble of trial field trajectories. This paper focuses on numerical and computational aspects of the EnKF. In response to the increasing computational challenge posed by the ever more ambitious configurations, an ever larger fraction of the EnKF software system has gradually been parallelized over the past decade. In a strong scaling experiment, the way in which the execution time decreases as larger numbers of processes are used is investigated. In fact, using a substantial fraction of one of the CMC's computers, very short execution times are achieved. As it would thus appear that the CMC's computers can handle more demanding configurations, weak scaling experiments are also performed. Here, both the size of the problem and the number of processes are simultaneously increased. The parallel algorithm responds well to an increase in either the number of ensemble members or the number of model coordinates. A substantial increase (by an order of magnitude) in the number of assimilated observations would, however, be more problematic. Thus, to the extent that this depends on computational aspects, it appears that the meteorological quality of the Canadian operational EnKF can be further improved.
Read full abstract