The objective of this study was to compare the biomechanical properties in a single cycle axial loading test and the types of failures in two constructs (a 3-hole 4.5-mm dynamic compression plate (DCP) and 7-hole 5.5-mm Y locking compression plate (Y-LCP)) in equine proximal interphalangeal joint (PIJ) arthrodesis. One limb in each pair was randomly assigned to PIJ arthrodesis using a 3-hole 4.5-mm DCP combined with two transarticular 5.5-mm cortical screws, whereas the contralateral limb was submitted to PIJ arthrodesis using a 7-hole Y-shaped 5.0-mm LCP in conjunction with one transarticular 4.5-mm cortical screw inserted through the central plate hole. Cortical screws were inserted in lag fashion. Constructs were submitted to a single axial load cycle to failure. Construct stiffness, load, and deformation were analyzed. Dynamic compression plate and Y-LCP arthrodesis constructs did not differ significantly and were equally resistant to axial loading under the conditions studied (DCP and Y-LCP group stiffness, 5685.22 N/mm and 6591.10 N/mm, respectively). Arthrodesis of the PIJ using a DCP and two transarticular 5.5-mm cortical screws or a Y-LCP yielded biomechanically equivalent outcomes under the test conditions considered. However, Y-LCP provides less impact in the palmar/plantar bone. Application of Y-LCP with unicortical screws has equivalent biomechanical characteristics of DCP and may be a safe option for PIJ arthrodesis, where potential trauma secondary to applying bicortical screws in the palmar/plantar aspect of the pastern can be avoided.
Read full abstract