BackgroundThe global prevalence of autism spectrum disorder (ASD) is around 1%. Yet the current diagnosis of ASD mainly depends on clinicians' experience and caregivers' report, which are subjective, time consuming, and labor demanding. An objective and efficient way to diagnose ASD is urgently needed. The objective of this study was to quantify an omnipresent yet least studied behavioral characteristic in children with ASD – interpersonal motor coordination (IMC), and to investigate the feasibility of using IMC related features to identify ASD by implementing machine learning algorithms. MethodsTwenty children with ASD and twenty-three children with typical development (TD) were filmed in a conversation with an interviewer. Motion energy analysis was implemented to obtain the movement time series, and cross wavelet analysis (CWA) quantified the level of IMC at different movement frequencies. Machine learning algorithms were utilized to examine whether these two groups of children could be accurately classified using features of IMC. ResultsStatistical analysis revealed reduced IMC in the ASD group at relatively high movement frequencies. The establishment of machine learning (ML) models showed that the maximum classification accuracy was 85.37% (specificity = 95.24%, sensitivity = 75.00%) using five original coherence values computed with CWA. In addition, the classification accuracy could be improved to 92.68% (specificity = 95.24%, sensitivity = 90.00%) with three novel features created by taking the sum of statistically significant features. ConclusionsChildren with ASD demonstrated an atypical profile of IMC, and IMC could be used to objectively classify children with ASD and TD. In addition, our analyses showed that creating novel features based on statistically significant features could help improve classification performance. It is proposed that such economic, contactless, and calibration-free approach to data collection might well serve both ASD research and practice, particularly early objective identification. However, this study could be improved with respect to larger sample size with balanced gender ratio and different severity.