Achieving a narrow emission bandwidth islong pursued for display applications. Among all primary colors, obtaining pure red emission with high visual perception is the most challenging. In this work, CsPbI3 halide perovskite nanoplatelets (NPLs) with rigorously controlled 2D [PbI6]4- octahedron layer number (n) are demonstrated. A perovskite core-PbSO4 shell structure is designed to prevent aggregation and fusion between NPLs, enabling consistent thickness and quantum confinement strength for each NPL. Consequently, exact n = 4 CsPbI3NPLs are demonstrated, exhibiting emission peaks around 630nm, with very narrow spectral bandwidths of <24nm and high absolute photoluminescence quantum yields up to 85%. The emission of n = 4 NPLs falls exactly within the pure-red region, closely aligning with the International Telecommunication Union Recommendation BT.2020 standard. Measurements suggest predominant stability and color homogeneity compared to traditional red-emitting CsPbIxBr3- x nanocrystals. Finally, proof-of-concept pure-red emissive light-emitting diodes (LEDs) are demonstrated by integrating n = 4 CsPbI3 NPLs films with a blue LED chip, showing an excellent external quantum efficiency of 18.3% and high brightness exceeding 3 × 106 nits. Stringent requirements for future display technologies, are satisfied based on the high color purity, stability, and brightness of CsPbI3 NPLs.