This work was carried out to explore the potential use of used face masks in concrete to develop sustainable green concrete. In this experimental study, used face masks were cut up, removing the ear stripes and internal nose steel wire, to prepare elongated fibers. These fibers were incorporated in cement fly ash mixtures as an additive to determine the response of M20-grade concrete. The Class F fly ash (FA) was employed as a fractional substitute of cement up to 25% by weight, whereas the addition of face masks occurred at 0%, 0.125%, and 0.25% by volume of concrete. The testing scheme focused on the mechanical and durability characteristics of the cement FA mixtures carried out after 3, 28, and 60 days of curing. The inclusion of FA and face mask fibers reduced the density of concrete specimens. The compressive, splitting tensile, and flexural strengths of mixes were also reduced at an early age; however, the strength characteristics improved at later ages, compared to the control mix. The combination of both materials in concrete mixtures resulted in lower water absorption, lower bulk water sorption, and lower mass loss values against acid attack at later ages. Similarly, the electrical resistance of concrete substantially enhanced by increasing the percentage of both materials. The experimental results demonstrated that processed face masks can be utilized in cement fly ash mixes without significantly compromising the resultant concrete characteristics.
Read full abstract