Abstract
To quantitatively identify internal wire breakage damage in mining wire ropes, a wire rope internal wire breakage signal identification method is proposed. First, the whale optimization algorithm is used to find the optimal value of the variational mode decomposition parameter [K,α] to obtain the optimal combination of the parameters, which reduces the signal noise with a signal-to-noise ratio of 29.29 dB. Second, the minimum envelope entropy of the noise reduction signal is extracted and combined with the time-domain features (maximum and minimum) and frequency-domain features (frequency–amplitude average, average frequency, average power) to form a fusion feature set. Finally, we use a particle swarm optimization–least squares support vector machine model to identify the internal wire breakage of wire ropes. The experimental results show that the method can effectively identify the internal wire rope breakage damage, and the average recognition rate is as high as 99.32%, so the algorithm can greatly reduce the system noise and effectively identify the internal damage signal of the wire rope, which is superior to a certain extent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.