Sound at 85 to 450 Hz propagating in approximately 80-m depth water from fixed sources to a joint horizontal/vertical line array (HLA/VLA) is analyzed. The data are from a continental shelf area east of Delaware Bay (USA) populated with tidally generated long- and short-wavelength internal waves. Sound paths are 19 km in the along-shore (along internal-wave crest) direction and 30 km in the cross-shore direction. Spatial statistics of HLA arrivals are computed as functions of beam steering angle and time. These include array gain, horizontally lagged spatial correlation function, and coherent beam power. These quantities vary widely in magnitude, and vary over a broad range of time scales. For example, correlation scale can change rapidly from forty to five wavelengths, and correlation-scale behavior is anisotropic. In addition, the vertical array can be used to predict correlation expected for adiabatic propagation with cylindrical symmetry, forming a benchmark. Observed variations are in concert with internal-wave activity. Temporal variations of three coherence measures, horizontal correlation length, array gain, and ratio of actual correlation length to predicted adiabatic-mode correlation length, are very strong, varying by almost a factor of ten as internal waves pass.