Recent advancements in additive manufacturing techniques have enabled the fabrication of intricate structures. Among these structures, triply periodic minimal surfaces (TPMSs) such as the gyroid, are particularly promising for heat and mass transfer applications owing to their higher surface area to volume ratios compared to conventional structures such as heat exchangers. This study experimentally investigates the pressure drop characteristics of single- and two-phase flows in a gyroid-structured channel under adiabatic conditions. In particular, using an additively manufactured test section with a gyroid-structured channel, the pressure drop characteristics of both single- and two-phase flows are analyzed. The results ofsingle-phase flow experiments reveal that the friction factor depends on the hydraulic diameter, which is defined by the internal volume and surface area of the channel. This suggests that in addition to the hydraulic diameter, other parameters such as porosity and wall thickness must also be considered. Subsequently, the two-phase pressure drop predictions of homogeneous and separated models are compared with the pressure drop data obtained from two-phase flow experiments. The results reveal that gas–liquid separation must be considered to accurately predict the pressure drop in regions influenced by gravitational effects. Furthermore, correlations for predicting the pressure drops both single- and two-phase flows within the operating constraints are proposed.