In September 2023, thirty declining 30-year-old avocado (Persea americana) trees ('Hass' grafted on 'Zutano' seedlings) were detected in a 1.5-ha orchard in the island of Crete (Chania region). Crown symptoms encompassed wilting and leaf chlorosis, advancing to defoliation and extensive dieback. Tap and feeder roots decayed and brown discoloration of root tissues was evident on heavily infected trees. The disease was severe and widespread, resulting in a 5% mortality rate among 300 trees. The pathogen was isolated with a modified soil baiting technique (Ferguson and Jeffers, 1999). Surface disinfected avocado fruits were immersed in water containing soil samples. Following a period of 2 to 8 days, tissue fragments from the resulting necrotic lesions on the fruit surface were transferred on ΡΑRP medium and subsequently incubated at 20°C (Ferguson and Jeffers, 1999). Three isolates (AV2, AV12 and AV11a) were obtained by transferring single hyphal tips to new Petri dishes containing V8 juice agar. They were grown at 20˚C and used for identification after 10 days. Isolates formed coralloid colonies with abundant clustered spherical hyphal swellings and terminal or intercalary (ratio 1:5) thick-walled chlamydospores measuring 20 to 36 μm (avg 29±0.8 μm) with characteristic thick walls (avg 1.2±0.2 μm). Sporangia, produced in non-sterile soil-extract water, were ovoid to obpyriform, persistent, non-papillate, 32 to 81 μm (avg 56±4.8 μm) long and 20 to 42 μm (avg 31±3.2 μm) wide (n=100). Isolates were heterothallic as they did not produce oospores in single cultures. Based on the morphological traits the isolates were identified as Phytophthora cinnamomi (Erwin and Ribeiro 1996). The internal transcribe spacer region (ITS) including ITS1, 5.8S rDNA region, and ITS2 as well as the cytochrome c oxidase subunit I (coxI) gene of the three representative isolates wereamplified with ITS1/ITS4 and FM83/FM84 primers, respectively (White et al. 1990; Martin and Tooley 2003), and sequenced (GenBank acc. PP506613 to PP506615 and PQ063867 to PQ063869, respectively). BLAST search revealed almost 100% identity with the sequences of P. cinnamomi ex-isotype isolate (KC478663 and KU899315 respectively). Pathogenicity tests using isolate AV2 were conducted following the soil infestation method (Jung et al. 1996) using six-year-old avocado 'Zutano' seedlings. Six non-inoculated plants treated with vermiculite-multivitamin juice mixture were used as controls. Plants (1 m tall) were grown in pots under greenhouse conditions and watered regularly. Six weeks post inoculation, all inoculated trees showed chlorosis, wilting and root rot, while control plants remained symptomless. Symptoms were similar to those observed in the field and the pathogen was re-isolated and molecularly identified as previously described. This study presents the first documented occurrence of P. cinnamomi, widely regarded as the most destructive avocado pathogen globally, on avocado crops in Greece (Rodger et al. 2019). Additionally, this marks the first recorded presence of this pathogen on the island of Crete, regardless of the host species. The accurate identification of Phytophthora species associated with avocado root rot is essential for implementing an effective disease management strategy, particularly in the selection of appropriate disease-resistant rootstocks.