Reservoir computing, using nonlinear dynamical systems, offers a cost-effective alternative to neural networks for complex tasks involving processing of sequential data, time series modeling, and system identification. Echo state networks (ESNs), a type of reservoir computer, mirror neural networks but simplify training. They apply fixed, random linear transformations to the internal state, followed by nonlinear changes. This process, guided by input signals and linear regression, adapts the system to match target characteristics, reducing computational demands. A potential drawback of ESNs is that the fixed reservoir may not offer the complexity needed for specific problems. While directly altering (training) the internal ESN would reintroduce the computational burden, an indirect modification can be achieved by redirecting some output as input. This feedback can influence the internal reservoir state, yielding ESNs with enhanced complexity suitable for broader challenges. In this paper, we demonstrate that by feeding some component of the reservoir state back into the network through the input, we can drastically improve upon the performance of a given ESN. We rigorously prove that, for any given ESN, feedback will almost always improve the accuracy of the output. For a set of three tasks, each representing different problem classes, we find that with feedback the average error measures are reduced by 30%-60%. Remarkably, feedback provides at least an equivalent performance boost to doubling the initial number of computational nodes, a computationally expensive and technologically challenging alternative. These results demonstrate the broad applicability and substantial usefulness of this feedback scheme.
Read full abstract