The human thalamus is a heterogeneous subcortical structure coordinating whole-brain activity. Investigations of its internal organization reveal differentiable subnuclei, however, a consensus on subnuclei boundaries remains absent. Recent work suggests that thalamic organization additionally reflects continuous axes transcending nuclear boundaries. Here, we study how low-dimensional axes of thalamocortical structural connectivity relate to intrathalamic microstructural features, functional connectivity, and structural covariance. Using diffusion MRI, we compute a thalamocortical structural connectome and derive two main axes of thalamic organization. The principal axis, extending from medial to lateral, relates to intrathalamic myelin, and functional connectivity organization. The secondary axis corresponds to the core-matrix cell distribution. Lastly, exploring multimodal associations globally, we observe the principal axis consistently differentiating limbic, frontoparietal, and default mode network nodes from dorsal and ventral attention networks across modalities. However, the link with sensory modalities varies. In sum, we show the coherence between lower dimensional patterns of thalamocortical structural connectivity and various modalities, shedding light on multiscale thalamic organization.
Read full abstract