AbstractThe vertical and lateral profiles of temporal variations in soil moisture are important for understanding the hydrological process along hillside transects. In this study, relationships among measured soil moistures were explored to configure the hydrological contributions of different flowpaths. All the measured soil moistures included a common stochastic structure because rainfall, the hydrometeological driver, is the main factor that determines the soil moisture response feature, and the infiltration process through the topsoil at a shallow depth is also common in all measured soil moisture histories. Therefore, the relationships between the measured series are also affected by both rainfall and topsoil infiltration. The common stochastic structure of the soil moisture series was removed via a prewhitening procedure. A systematic analysis procedure is presented to delineate the exclusive causal relationships among multiple soil moisture measurements. A monitoring system based on multiplexed time domain reflectometry was used to obtain soil moisture time series along two transects on a steep hillslope during the rainy season. The application of the proposed method for monitoring points in two adjacent locations provided 8, 12, 14, and 13, 16, 22 causal relationships for vertical, lateral in parallel, and diagonal directions, respectively, along the two transects. The point‐based contributions of the internal flowpath can be evaluated as the correlation is normalized in the context of inflow and outflow. The hydrological processes in the soil layer, vertical flow, lateral flow, downslope recharge, and return flow were quantified, and the relative importance of each hydrological component was determined to improve our understanding of the hydrological processes along the two transects of the study area. Copyright © 2011 John Wiley & Sons, Ltd.