Fissures in natural rocks play an important role in determining the strength, deformability and failure behavior of rock mass. However in the past, triaxial compression experiments have rarely been conducted for rock materials containing three-dimensional (3-D) fissures and the failure mechanical behavior of fissured rocks is not well known due to the difficulty of conducting triaxial experiments on fissured rocks. Therefore in this research, conventional triaxial compression experiments were performed to study the strength, deformability and failure behavior of granite specimens with one preexisting open fissure. Thirty-one specimens were prepared to perform conventional triaxial compression tests for intact and fissured granite. First, based on the experimental results, the effects of the confining pressure and the fissure angle on the elastic modulus and the peak axial strain of granite specimens are analyzed. Second, the influence of the confining pressure on the crack damage threshold and the peak strength of granite with respect to various fissure angles are evaluated. For the same fissure angle, the crack damage threshold and the peak strength of granite both increase with the confining pressure, which is in good agreement with the linear Mohr–Coulomb criterion. With increasing fissure angle, the cohesion of granite first increases and later decreases, but the internal friction angle is not obviously dependent on the fissure angle. Third, nine crack types are identified to analyze the failure characteristics of granite specimens containing a single fissure under conventional triaxial compression. Finally, a series of X-ray microcomputed tomography (CT) observations were conducted to analyze the internal damage mechanism of granite specimens with respect to various fissure angles. Reconstructed 3-D CT images indicate obvious effects of confining pressure and fissure angle on the crack system of granite specimens. The study helps to elucidate the fundamental nature of rock failure under conventional triaxial compression.
Read full abstract