AbstractAn electrohydraulic total artificial heart (EHTAH) system has been developed. The EHTAH system consists of diaphragm‐type blood pumps, and electrohydraulic actuator, an internal control unit, a transcutaneous energy transfer system (TETS), a transcutaneous optical telemetry system (TOTS), and an internal battery. The reciprocating rotation of the impeller generates oil pressure that drives the blood pumps at alternating intervals. The blood pumps and the actuator were successfully integrated into the pump unit without oil conduits. As a result of miniaturizing the blood pumps and the actuator, the displacement volume and weight of the EHTAH system were decreased to 872 ml and 2492 g, respectively. Furthermore, the maximum flow rate and efficiency increased up to 12 L/min and 15.4%. The pump units and the EHTAH systems were successfully implanted in 36 calves weighing from 55 to 87 kg. In the longest case, a calf with the pump unit survived for 87 days and a calf with the EHTAH system survived for 70 days. The EHTAH system was powered by the TETS, and was powered every day by the internal battery for 40 minutes. These results indicate that the EHTAH system has the potential to become a fully implantable cardiac replacement system. © 2010 Wiley Periodicals, Inc. Electron Comm Jpn, 93(9): 34–46, 2010; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/ecj.10220