The surface behavior of monoacylated beta-cyclodextrins, with hydrocarbon chains of 16, 14, and 10 carbons, has been assessed by the measurement of the surface pressure, surface (dipole) potential, optical reflectivity, and surface topography in monolayers at the air-water interface. For all the derivatives studied, the intermolecular organization adopted along compression-decompression isotherms reveals a rich variety of packing states which imply profound reorganization of the hydrophobic and hydrophilic moieties of the beta-cyclodextrin derivatives in the film, depending on the lateral surface pressure. The intermolecular arrangements are consistent with the adoption of a different and defined orientation of the cyclic oligosaccharide unit, relative to the interfacial plane and the aqueous subphase. This is different from the behavior of the per-substituted derivatives, and none of the changes exhibited by the monosubstituted forms are consistent with the oligosaccharide ring remaining in a fixed orientation along the interface when the surface pressure is varied.