Hematopoietic lineage cell-specific HS1 protein is converted into a substrate for c-Fgr by previous Syk-mediated phosphorylation, at site(s) that bind to the SH2 domain of c-Fgr [Ruzzene, M., Brunati, A. M., Marin, O., Donella-Deana, A. & Pinna, L. A. (1996) Biochemistry 35, 5327-5332]. Here we show that a phosphopeptide derived from one such site, HS1-(320-329)-phosphopeptide (PEGDYpEEVLE), enhances up to tenfold, in a dose-dependent manner, the catalytic activity of c-Fgr either assayed with peptide substrates or evaluated as intermolecular autophosphorylation of c-Fgr itself. The dephosphorylated HS1-(320-329)-peptide is totally ineffective, while the stimulatory efficacy of other phosphopeptides derived from the polyoma virus middle T antigen-(393-402) sequence, c-Src, and c-Fgr autophosphorylation sites, and the C-terminal c-Src site (Tyr527) is variable and correlates reasonably well with the predicted affinity for the c-Fgr SH2 domain. Stimulation of c-Fgr catalytic activity is also promoted by the full-length HS1 protein, previously tyrosine phosphorylated by Syk, and is accounted for by an increased Vmax while the Km values are unchanged. If the normal activator of c-Fgr kinase, Mg2+, is replaced by Mn2+, stimulation by HS1-(320-329)-phosphopeptide is still observable with peptide substrates, while autophosphorylation is, in contrast, inhibited by the phosphopeptide. These findings, in conjunction with the ability of previously autophosphorylated c-Fgr to be stimulated by HS1-(320-329)-phosphopeptide, support the view that stimulation of c-Fgr by phosphopeptide is not or is not entirely a consequence of increased autophosphorylation. Interestingly, neither Syk and C-terminal Src kinase nor three other members of the Src family (Lyn, Lck, and Fyn) are susceptible to stimulation by phosphopeptide, as observed with c-Fgr. These data support the notion that c-Fgr undergoes a unique mechanism of activation promoted by tyrosine-phosphorylated polypeptide that binds to its SH2 domain. This suggests that such a mode of regulation is peculiar of protein-tyrosine kinases committed to the secondary phosphorylation of sequentially phosphorylated proteins.