The original UT-1 transporter gene was initially identified in the spiny dogfish (Squalus acanthias), but localization of the UT-1 protein was not determined. Subsequent UT-1 expression was shown to localize to the collecting tubule (CT) of the shark nephron in other shark species, with expression in a closely related chimaera species also located additionally at a lower level in the intermediate-I segment (IS-I) of the nephron. In spiny dogfish, two UT-1 splice variants are known (UT-1 long and short), and there was also a second UT-1 gene described (here termed Brain UT). In this study, a second splice variant of the second Brain UT gene was discovered. Expression profiles (mRNA) of UT-1 long and short and Brain UT were determined in a number of spiny dogfish tissues. Quantitative PCR in kidney samples showed that the level of the short variant of UT-1 was around 100 times higher than the long variant, which was itself expressed around 10 times higher than Brain UT cDNA/mRNA (in kidney). For the long variant, there was a significantly higher level of mRNA abundance in fish acclimatized to 75% seawater. Ultimately, three UT-1 antibodies were made that could bind to both the UT-1 short and long variant proteins. The first two of these showed bands of appropriate sizes on Western blots of around 52.5 and 46 kDa. The second antibody had some additional lower molecular weight bands. The third antibody was mainly bound to the 46 kDa band with faint 52.5 kDa staining. Both the 52.5 and 46 kDa bands were absent when the antibodies were pre-blocked with the peptide antigens used to make them. Across the three antibodies, there were many similarities in localization but differences in subcellular localization. Predominantly, antibody staining was greatest in the intermediate segment 1 (IS-I) and proximal (PIb) segments of the first sinus zone loop of the nephron, with reasonably strong expression also found at the start and middle of the late distal tubule (LDT; second sinus zone loop). While some expression in the collecting tubule (CT) could not be ruled out, the level of staining seemed to be low or non-existent in convoluted bundle zone nephron segments such as the CT. Hence, this suggests that spiny dogfish have a fundamentally different mode of urea absorption in comparison to that found in other shark species, potentially focused more on the nephron sinus zone loops than the CT.