The article aims to describe the design and operation of a fundamentally new self-regulating planetary transmission, which, without a control system, changes the gear ratio under the influence of a variable external load. A self-regulating transmission can be created based on a kinematic chain with two degrees of freedom, having only one input. According to the laws of mechanics, such a chain has no definability of motion, since the number of inputs must be equal to the number of degrees of freedom. The equilibrium of a two-movable chain with one input can obtained by creating an additional constraint that substitutes a reaction in the instantaneous center of the intermediate link velocities by the friction moment in the hinge of the intermediate link. The friction moment creates a force constraint, which is taken into account in the equilibrium condition. The obtained equilibrium conditions ensure the definiteness of motion and the ability of self-regulation in the form of an inversely proportional dependence of the speed of the output link on the variable external load. The described method makes it possible to create a fundamentally new class of self-regulating mechanisms in all branches of technology. The interaction of kinematic and force parameters and the construction of parameter graphs was performed using the SolidWorks 2021 program with certain additions. The experimental studies performed confirm the reliability of the theoretical developments.
Read full abstract