PurposeTopology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations based on compliance minimization under volume constraint suffers from numerous difficulties for self-weight dominant scenarios, such as non-monotonic behaviour of the compliance, possible unconstrained character of the optimum and parasitic effects for low densities in density-based approaches. This paper aims to propose an alternative approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading.Design/methodology/approachIn order to overcome the above first two issues, a regularized formulation of the classical compliance minimization problem under volume constraint is adopted, which enjoys two important features: (a) it allows for imposing any feasible volume constraint and (b) the standard (original) formulation is recovered once the regularizing parameter vanishes. The resulting topology optimization problem is solved with the help of the topological derivative method, which naturally overcomes the above last issue since no intermediate densities (grey-scale) approach is necessary.FindingsA novel and simple approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading is proposed. A set of benchmark examples is presented, showing not only the effectiveness of the proposed approach but also highlighting the role of the self-weight loading in the final design, which are: (1) a bridge structure is subject to pure self-weight loading; (2) a truss-like structure is submitted to an external horizontal force (free of self-weight loading) and also to the combination of self-weight and the external horizontal loading; and (3) a tower structure is under dominant self-weight loading.Originality/valueAn alternative regularized formulation of the compliance minimization problem that naturally overcomes the difficulties of dealing with self-weight dominant scenarios; a rigorous derivation of the associated topological derivative; computational aspects of a simple FreeFEM implementation; and three-dimensional numerical benchmarks of bridge, truss-like and tower structures.