The timing, intensity and duration of the cytokine cascade and reorganized interrelations in cytokine networks are not fully understood during acute HIV-1 infection (AHI). Using sequential plasma samples collected over three years post-infection in a cohort of MSM HIV-1 seroconvertors, we determined the early kinetics of cytokine levels during FiebigI-IV stages using Luminex-based multiplex assays. Cytokines were quantified and relationships between cytokines were assessed by Spearman correlation. Compared with HIV-negative MSM, HIV-infected individuals had significantly increased multiple plasma cytokines, including GM-CSF, IFN-α2, IL-12p70, IP-10 and VEGF, during both acute and chronic stages of infection. Furthermore, rapid disease progressors (RDPs) had earlier and more robust cytokine storms, compared with slow disease progressors (SDPs) (49.6 days vs. 74.9 days, respectively; 6.7-fold vs. 3.7-fold change of cytokines, respectively), suggesting the faster and stronger cytokine storm during AHI could promote disease progression. On the other hand, HIV-1 infection induced more interlocked cytokines network, establishing new strong correlations and imposing a higher rigidity. There were, respectively, 146 (44.9%) statistically significant correlations of cytokines in RDPs and 241 (74.2%) in SDPs (p < 0.001). This study suggests that immunomodulatory interventions aimed at controlling cytokine storm in AHI may be beneficial to slow eventual disease progression.
Read full abstract