Currently, exploring high-capacity, stable cathode materials remains a major challenge for rechargeable Aluminum-ion batteries (AIBs). As an intercalator for rechargeable AIBs, Al3+ produces three times the capacity of AlCl4- when the same number of anions is inserted. However, the cathode material capable of producing Al3+ intercalation is not a graphite material with AlCl4- intercalation but a transition metal sulfide material with polar bonding. In this paper, the insertion mechanism of Al3+ in 3R-MoS2 is investigated using first-principles calculations. It is found that Al3+ tends to insert into different interlayer positions at the same time rather than occupying one layer before inserting into another, which is different from the insertion mechanism of AlCl4- in graphite. Ab initio, molecular dynamics calculations revealed that Al3+ was able to stabilize the insertion of 3R-MoS2. Diffusion barriers indicate that Al3+ preferentially migrates to nearby stabilization sites in diffusion pathway studies. According to the calculation, the theoretical maximum specific capacity of Al3+ intercalated 3R-MoS2 reached 502.30 mAg h-1, and the average voltage of the intercalation was in the range of 0.75-0.96 V. Therefore, 3R-MoS2 is a very promising cathode material for AIBs.
Read full abstract