The generation of interlayer charge transfer excitons upon photoexcitation is strongly desirable for two-dimensional (2D) materials stacked through van der Waals interactions. In this work, we investigate photoinduced charge transfer in silicanes (SiH) with three typical stackings. A concept of the regional natural hole orbital and its conjugated particle orbital is developed to characterize excited states in solids. This method delivers bonding information about excited states and explains the formation of certain types of states in nanomaterials. Utilizing this tool, we demonstrate that SiH in the 1H and 6R stackings exhibits an interlayer charge transfer distance that reaches ∼10 Å under violet and near-ultraviolet radiation. The charge transfer is attributed to the interlayer overlap between orbitals at the conduction band minimum, which is disfavored by the 3R stacking. Our findings suggest a new and feasible approach for tuning the optoelectronic properties of Group 14 2D materials by altering their stackings.
Read full abstract