The discovery of intrinsic 2D ferromagnets provides exciting possibilities for spintronics applications. A particularly attractive example is CrI3, whose monolayer is ferromagnetic while bilayer shows antiferromagnetic coupling. Because of weak interlayer coupling, the magnetism of bilayer CrI3 can be easily modulated by external perturbations, such as gating or pressure. Here, we constructed a magnetic phase diagram of bilayer CrI3 under arbitrary biaxial strain (within ±4%) from compression to stretch, and found that compressive strain can effectively convert the antiferromagnetic coupling of bilayer CrI3 to ferromagnetic. Detailed analyses on electronic structure were then performed to unravel the underlying mechanism of the magnetic phase transition. It was shown that both band gap and orbital composition at conduction band minimum play important roles in determining magnetic ground states of strained bilayer CrI3. These results strengthen our understanding of the interlayer magnetism of 2D magnets and provide a feasible way to modulate the magnetism in 2D layered materials.
Read full abstract