In large format additive manufacturing (LFAM), a keener understanding of the relationship between the manufacture method and material temperature dependency is needed for the production of large polymer parts. Statistical analyses supported by material properties and a meso-structural understanding of LFAM are applied to elucidate tensile data trends. The data from LFAM polyethylene terephthalate glycol with 30% carbon fiber (CF) (PETG CF30%) panels (diagonal, horizontal, and vertical in the x-y print plane) and injection-molded specimens tensile tested at six different testing temperatures (room temperature, 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C) were used for statistical analyses. A standard deviation, a coefficient of variation, and a two-way and one-way analyses of variance (ANOVA) were conducted. The manufacturing method (44.2%) and temperature (47.4%) have a strong effect on the ultimate tensile strength, in which temperature (82.6%) dominates Young's modulus. To explain the difference between the ultimate tensile strength of vertical, diagonal, and horizontal specimens at room temperature, a visual inspection of the specimen failure was conducted and the maximum stress at the crack tip was calculated analytically. The decreased strength in the diagonal specimens resulted from the reliance on interlaminar adhesion strength. Future work will consider the effect of the void space variation on tensile strength variance.
Read full abstract