Abstract

Three-dimensional woven composites address the limitation of weak interlaminar strength found in traditional laminated composites and offer superior resistance to out-of-plane impact. However, the complex material composition and structural intricacies necessitate investigation into their damage mechanisms. This study introduces novel and reliable microscale and mesoscale Representative Volume Element (RVE) models for three-dimensional woven composites, developed through advanced CT scanning and comprehensive multi-directional tensile and shear experiments. The research explores the impact of fiber volume fraction on yarn mechanical properties using the microscale RVE model, yielding precise macroscale homogenization parameters through the mesoscale RVE model. Furthermore, a macro-meso model tailored for low-velocity impact scenarios is established, significantly enhancing computational efficiency without compromising accuracy, thus providing support for further research on the impact properties of three-dimensional woven composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.