The effects of tensile and compressive strain, originating from U-bent deformation, on the corrosion behavior of 304 L stainless steel were studied via analyses of the material’s microstructure and electrochemistry in a 3.5% NaCl solution. In contrast with the as-received 304 L steel with the largest grain size, the deformed 304 L material with a small grain size had the lowest number of Σ3 grain boundaries and an overall low fraction, with special low-Σ values (≤29). Moreover, the dislocation density increased to 1.13 × 1016/m2 and 1.4 × 1016/m2 for the tensile and compressive 304 L steel testing, respectively. The decrease in Epit and increase in ipit suggested that there was a decrease in anti-corrosion properties due to tensile and compressive deformation. This might be attributed to the higher plastic strain found in deformed 304 L steel, which can induce the rupture of passive film and have a harmful influence on corrosion resistance. In particular, the compressive 304 L steel with the highest content of deformed grains (42.12%) promoted the formation of microgalvanic cells, thereby facilitating the nucleation of pits. Then, these pits grew to a large size through grain shedding. Subsequently, massive chloride ions were generated during metal dissolution and diffused along grain boundaries, which promoted the initiation and propagation of intergranular corrosion cracks.
Read full abstract