Stevia rebaudiana is a promising medicinal and edible plant, widely cultivated in China. In 2022-2023, a new leaf spot disease occurred in S. rebaudiana in Hongxing country (32°34'55″N, 118°2'12″E), Dingyuan city, Anhui province. Symptoms were observed on 10 to 15% of plants in three S. rebaudiana nursery beds (0.1 ha in total). The typical symptoms included dark brown spots on the leaves and foliar wilting, the development of brown stems with dieback of top buds, and occasional plant death (Fig. 1a). To identify the pathogen, twenty diseased leaves were collected, cut into small pieces, surface sterilized with 75% ethanol for 30 s, in 0.5% sodium hypochlorite for 2 min, washed three times in sterile water, placed on PDA, and incubated at 25℃ for 5 days. Pure cultures were prepared by subculturing hyphal tips. Twenty-five Stagonosporopsis-like isolates with similar morphology were obtained. After 7 days growth on PDA, colonies had a regular margin, were cottony, and formed concentric circles on the surface that were gray-green. The reverse side of the culture was dark brown with a creme-orange and white, margin. The growth rate was 9.5 mm/day on PDA. Pycnidia were mostly solitary, globose or subglobose, pale to dark brown, thin-walled, glabrous, ostiolate, 95.735~250.851×90.93~266.32 μm (n=50). Conidia were oblong, cylindrical to ellipsoidal, smooth-walled, aseptate, with rounded ends and two polar guttules and measured 3.41 to 5.83 × 1.78 to 3.07 μm (n = 50) (Fig.1 b-d). For molecular identification, the internal transcribed spacer (ITS) rDNA, large ribosomal subunit (LSU) gene, β-tubulin (TUB2) gene and RNA polymerase II (RPB2) gene sequences of two representative isolates (TYJ-SP1 and TYJ-SP2) were amplified by PCR (Woudenberg et al. 2009; Dong et al. 2021). The sequences were deposited in GenBank (accession nos.: OR506193 and OR506194 for ITS, OR533526 and OR533527 for LSU, OR545221and OR545222 for TUB; OR545223 and OR545224 for RPB2) and showed 99.60% to 99.2% similarity to ITS (502/504 bp and 507/511 bp; MZ156571), 100% similarity to LSU (857/857 bp and 857/857 bp; MZ191532), 98.67% to 99.3% similarity to TUB2 (296/300 bp and 298/300 bp; MZ203132) and 99.78% (888/890 bp and 868/870 bp; MZ203135) of S. pogostemonis strain ZHKUCC 21-0001. A maximum likelihood phylogenetic analysis based on the concatenated sequences of ITS, LSU, TUB2 and RPB2 using MEGA 11.0 showed the strains TYJ-SP1 and TYJ-SP2 formed a clade with S. pogostemonis (Fig. 2). Thus, the strains were identified as S. pogostemonis (Dong et al. 2021). To test pathogenicity, the strain TYJ-SP1 was inoculated onto 30-day-old S. rebaudiana seedlings which were surface sterilized with 70% alcohol and washed 3 times with water and air dried prior to inoculation. Ten seedlings were sprayed with a conidial suspension (105 conidia/mL) and ten seedlings were sprayed with sterile water to serve as the negative control. All seedlings were maintained in a growth chamber (25°C, 90% relative humidity) with a 16 h photoperiod. Brown spots were first observed on inoculated leaves 48 h after inoculation; typical symptoms appeared by 7 days post inoculation. All inoculated plants developed symptoms similar to naturally infected plants in the nursery beds, and the disease incidence reached 100% while control plants remained symptom free (Fig. 1 e-f). The same Stagonosporopsis isolates were reisolated from the inoculated plants and identified based on morphological and phylogenetic analyses. S. pogostemonis has been reported to cause leaf spot in Pogostemon cablin and Brassica oleracea var. botrytis (Dong et al. 2021; Habib et al. 2024). To our knowledge, this is the first report of S. pogostemonis causing leaf spot on S. rebaudiana in China. As a medicinal and economic plant, S. rebaudiana is widely planted in China and other Asian countries. The occurrence of this leaf spot disease seriously affects its medicinal and economic value. Therefore, it is crucial to establish and implement effective disease management practices to reduce the impact of the disease.
Read full abstract