In a comment on our 2008 paper (Catchings, Gandhok, et al. , 2008) on the Santa Monica fault in Los Angeles, California, Pratt and Dolan (2010) (herein referred to as P&D) cite numerous objections to our work, inferring that our study is flawed. However, as shown in our reply, their objections contradict their own published works, published works of others, and proven seismic methodologies. Rather than responding to each repeated invalid objection, we address their objections by topic in the subsequent sections. In Catchings, Gandhok, et al. (2008), we presented high-resolution seismic-reflection images that showed two near-surface faults in the upper 50 m beneath the grounds of the Wadsworth Veterans Administration Hospital (WVAH). Although P&D suggest we effectively duplicated their seismic acquisition, our survey was not a duplication of their efforts. Rather, we conducted a seismic-imaging survey over a similar profile as Pratt et al. (1998) but used a different data acquisition system and different data processing methods to evaluate methods of seismically imaging blind faults in the wake of the 17 January 1994 M 6.7 Northridge earthquake. We used an acquisition method that provides both tomographic seismic velocities and reflection images. Our combined-data approach allowed for shallower imaging (∼2.5 m minimum) than the ∼20-m minimum of Pratt et al. (1998), clearer images of the fault zone, and more accurate depth determinations (rather than time images). In processing the reflection images, we used prestack depth migration, which is generally accepted as the only proper imaging method for imaging subsurface structures with strong lateral velocity variations (Versteeg, 1993), a condition shown to exist at the WVAH site. We correlated our reflection images with refraction tomography images, borehole lithology, and velocity data, Interferometric Synthetic Aperture Radar images, and changes in groundwater depths. Except for some minor differences, our seismic-reflection images coincide with previously published seismic-reflection …