AbstractGlobal Navigation Satellite Systems (GNSS) applications require computation of the geometric range between the satellite vehicle at the time-of-signal transmission and the receiver antenna location at the time-of-signal reception. This computation requires attention to the frames of reference due to the rotation of the Earth-Centered Earth-Fixed (ECEF) frame during the time-of-signal propagation. Three range computation approaches are commonplace and will be discussed herein. The first is the Global Positioning System Interface Control Document recommendation to rotate the ECEF frames to a common reference time. The other two are forms of the Sagnac correction. The Sagnac derivations already in the literature are either limited to stationary receivers or lack the connection between the Earth-centered inertial (ECI) and ECEF frames. Neither form of the Sagnac correction exactly reproduces the geometric range. They are approximations. The literature does not currently contain an analysis of the error involved in using either form of the Sagnac correction. This article makes two contributions: (1) it presents derivations for both forms of the Sagnac correction that are valid for moving receivers and that maintain the connection between the ECI and ECEF frames; and (2) it analyzes the error of the Sagnac correction for orbits of different radius. The analysis shows that Sagnac corrections introduce range errors less than $$7.57\times 10^{-4}$$ 7.57 × 10 - 4 meters for GNSS satellites at medium Earth orbit.
Read full abstract