Advances in sequencing technology are allowing forensic scientists to access genetic information from increasingly challenging samples. A recently published computational approach, IBDGem, analyzes sequencing reads, including from low-coverage samples, in order to arrive at likelihood ratios for human identification. Here, we show that likelihood ratios produced by IBDGem are best interpreted as testing a null hypothesis different from the traditional one used in a forensic genetics context. In particular, rather than testing the hypothesis that the sample comes from a person unrelated to the person of interest, IBDGem tests the hypothesis that the sample comes from an individual who is included in the reference database used to run the method. This null hypothesis is not generally of forensic interest, because the defense hypothesis is not typically that the evidence comes from an individual included in a reference database. Moreover, the computed likelihood ratios can be much larger than likelihood ratios computed for the standard forensic null hypothesis, often by many orders of magnitude, thus potentially creating an impression of stronger evidence for identity than is warranted. We lay out this result and illustrate it with examples, giving suggestions for directions that might lead to likelihood ratios that test the typical defense hypothesis.
Read full abstract