Adipose tissue-derived stem cells (ADSCs) possess the capability to modulate the immune response and alleviate inflammation, rendering them a promising therapeutic option for various conditions, including autoimmune diseases, cardiovascular diseases, and tissue injuries. The osteogenic differentiation in ADSCs plays a pivotal role in fracture healing, bone growth, and the overall bone turnover process, governed by intricate interactions. Runt-related Transcription Factor 2 (RUNX2) is a key player in mineralized tissue generation and is typically found in the early stages of osteogenic differentiation. The objective of this study was to develop a high-affinity sandwich biosensor for the quantification of RUNX2. 1,1′-Carbonyldiimidazole-modified nanodiamond was immobilized on an amine-modified interdigitated electrode surface, followed by the use of a capture antibody to facilitate antigen interaction. A sandwich assay was conducted with the antibody, and the limit of detection for RUNX2 was calculated as 0.1 ng/mL, with a regression value (R2) of 0.9914 over a linear range of 1–2000 ng/mL. Furthermore, biofouling experiments with a nonimmune antibody, BSA, and TNF-α did not yield any current responses, indicating the specific detection of RUNX2. Additionally, RUNX2-spiked serum exhibited an increasing current response at all concentrations, confirming the selective detection of RUNX2.
Read full abstract