We examined respiratory activity of motor units (MUs) in the internal intercostal nerves (IICNs)-transferred biceps brachii muscle (IC-biceps) in cats. MUs of IC-biceps showed respiratory discharges in inspiratory and expiratory phases, and these were enhanced by CO 2 inhalation. Narrowing the airway also enhanced inspiratory and expiratory MUs activity. A mechanical load to the thorax immediately enhanced inspiratory MUs activity and weakened expiratory MUs activity. We analyzed the cross-correlation of MUs activity in interchondral muscle and IC-biceps to characterize the respiratory spinal descending inputs to motoneurons. We confirmed the short-term synchronization from interchondral muscles indicating divergence of a single respiratory presynaptic axon to thoracic motoneurons, but could not find synchronization from IC-biceps. The motor axonal conduction velocity (axonal CV) of IC-biceps MUs was lower than that of interchondral muscles. There was no correlation between the respiratory recruitment order of IC-biceps MUs and their axonal CV. These results indicate that IC-biceps shows the respiratory activities and afferent inputs from intercostal muscle spindles in the neighboring segments remain influential on activity of IC-biceps. In addition, the short-term synchronization from IC-biceps could not be found, suggesting that the intercostal nerve transfer alters the respiratory spinal descending inputs to thoracic motoneurons.