Healthcare 4.0 addresses modernization and digital transformation challenges, such as home-based care and precision treatments, by leveraging advanced technologies to enhance accessibility and efficiency. Semantic technologies, particularly knowledge graphs (KGs), have proven instrumental in representing interconnected medical data and improving clinical decision-support systems. We previously introduced a semantic framework to assist medical experts during patient interactions. Operating iteratively, the framework prompts medical experts with relevant questions based on patient input, progressing toward accurate diagnoses in time-constrained settings. It comprises two components: (a) a KG representing symptoms, diseases, and their relationships, and (b) algorithms that generate questions and prioritize hypotheses—a ranked list of symptom–disease pairs. An earlier extension enriched the KG with a symptom ontology, incorporating hierarchical structures and inheritance relationships to improve accuracy and question-generation capabilities. This paper further extends the framework by introducing strategies tailored to specific medical domains. Strategies integrate domain-specific knowledge and algorithms, refining decision making while maintaining the iterative nature of expert–patient interactions. We demonstrate this approach using an emergency medicine case study, focusing on life-threatening conditions. The KG is enriched with attributes tailored to emergency contexts and supported by dedicated algorithms. Boolean rules attached to graph edges evaluate to TRUE or FALSE at runtime based on patient-specific data. These enhancements optimize decision making by embedding domain-specific goal-oriented knowledge and inference processes, providing a scalable and adaptable solution for diverse medical contexts.
Read full abstract