Sulfur-doped biochar (S4BC) was prepared with cherry kernel powder as carbon source, Na2S2O3 as sulfur source and chemical activator. Na2S2O3 can activate biochar through the reaction with carbon, intercalation of alkali metals and the generated gas rushing out of pores, and at the same time, active sulfur atoms are doped into biochar during pyrolysis. The physical and chemical properties of S4BC adsorbent were evaluated by various characterization techniques. The results show that S4BC calcined at 800 °C has huge specific surface area of 959.6 m2/g, developed pore structure, and high content of S (18.84 wt%). Moreover, due to the existence of sulfur and oxygen functional groups, S4BC-800 provides sufficient active sites for the adsorption of Hg2+. According to Langmuir model, the maximum adsorption capacity of S4BC-800 for Hg2+ is 724 mg/g at 313 K, and the adsorption speed is fast with excellent stability and reusability. The microfiltration membrane device based on S4BC-800 can effectively remove the low concentration of Hg2+ in the solution. In this study, a simple method for preparing SBC materials is developed, which is not only of great significance as an adsorbent for Hg2+, but also provides a new choice for the preparation of heteroatom-doped materials.
Read full abstract