During the transition from Industry 4.0 to Industry 5.0, industrial robotics technology faces the need for intelligent and highly integrated development. Metaverse technology creates immersive and interactive virtual environments, allowing technicians to perform simulations and experiments in the virtual world, and overcoming the limitations of traditional industrial operations. This paper explores the application and evolution of metaverse technology in the field of industrial robotics, focusing on the realization of virtual–real integration and human–machine collaboration. It proposes a design framework for a virtual–real interaction system based on the ROS and WEB technologies, supporting robot connectivity, posture display, coordinate axis conversion, and cross-platform multi-robot loading. This paper emphasizes the study of two key technologies for the system: virtual–real model communication and virtual–real model transformation. A general communication mechanism is designed and implemented based on the ROS, using the ROS topic subscription to achieve connection and real-time data communication between physical robots and virtual models, and utilizing URDF model transformation technology for model invocation and display. Compared with traditional simulation software, i.e., KUKA Sim PRO (version 1.1) and RobotStudio (version 6.08), the system improves model loading by 45.58% and 24.72%, and the drive response by 41.50% and 28.75%. This system not only supports virtual simulation and training but also enables the operation of physical industrial robots, provides persistent data storage, and supports action reproduction and offline data analysis and decision making.