Amorphous solid dispersions (ASDs) function in part via a "parachute effect", i.e., polymer-enabled prolonged drug supersaturation, presumably through drug-polymer interactions in the liquid state. We aim to expand the utility of liquid state nuclear magnetic resonance (1HNMR) to streamline polymer selection for ASDs. Our hypothesis is that strong molecular interactions between polymer and drug in 1HNMR anticipate reduced precipitation kinetics in supersaturation studies. For three drug-polymer pairs (i.e., etravirine with each HPMC, HPMCAS-M, and PVP-VA), 1HNMR findings were compared to more common supersaturation studies. Drug-polymer interactions were assessed by saturation transfer difference NMR (STD-NMR) and T1 relaxation time. 2D-1H NOESY experiments were also performed. Supersaturation studies involved precipitation inhibition using the solvent-shift methodology. The results from STD-NMR and T1 relaxation time indicate etravirine bound preferably to HPMCAS-M > HPMC ≫ PVP-VA. STD-NMR and T1 relaxation time yielded insight into which fragments of etravirine structure bind with HPMCAS-M and HPMC. The strong interactions from STD-NMR and T1 relaxation time changes indicated that HPMCAS-M and HPMC, but not PVP-VA, are suitable polymers to maintain etravirine supersaturation and inhibit drug precipitation. 2D-1H NOESY results corroborate the findings of STD-NMR and T1 relaxation time, showing that etravirine interacts preferably to HPMCAS-M than to PVP-VA. Supersaturation studies using solvent-shift technique corroborated our hypothesis as predissolved HPMCAS-M and HPMC, but to a less extent PVP-VA, markedly promoted etravirine supersaturation and inhibited drug precipitation. Supersaturation studies agreed with STD-NMR and T1 relaxation time predictions, as HPMC and HPMCAS-M maintained etravirine in solution for longer time than PVP-VA. The results show promise of 1HNMR to streamline polymer selection in a nondestructive and resource sparing fashion for subsequent ASD development.