Numerical simulations of the interaction of internal solitary waves (ISWs) of opposite polarity are conducted by solving the incompressible Euler equations under the Boussinesq approximation. A double-pycnocline stratification is used. A method to determine when ISWs of both polarities exist is also presented. The simulations confirm previous work that the interaction of waves of the same polarity are soliton-like; however, here it is shown that when a fast ISW with the same polarity as a Korteweg–de Vries (KdV) solitary wave catches up and interacts with a slower ISW of opposite polarity, the interaction can be far from soliton-like. The energy in the fast KdV-polarity wave can increase by more than a factor of 5 while the energy in the slower negative-KdV-polarity wave can decrease by 50 %. Large trailing wave trains may be generated and in some cases multiple ISWs with KdV polarity may be formed by the interaction.
Read full abstract