At this stage, network communication technology is increasingly mature, and intelligent wearable products are also widely used in human daily life. Wearable products are popular with users because of their numerous types, complete functions and convenient services. Wearable products integrate interaction technology, and users can interact with products. However, how to improve the user’s interaction experience and reduce the user’s cognitive burden on the interaction interface is an urgent problem in the current product interaction design. Therefore, based on the analysis of the types and related technologies of wearable products, this paper made a specific analysis of the interaction design of wearable products, and established an interaction design model. At the same time, the wearable fall detection system was also tested by machine learning algorithm. The experimental results showed that the average test result of the algorithm in this paper was 87.39%, while the average test result of the traditional algorithm was 83.79%. In terms of the missed alarm rate of fall detection, the average test result of this algorithm was 6.4%, while the average test result of the traditional algorithm was 12.33%. In terms of fall detection sensitivity, the average test result of this algorithm was 92.50%, while the average test result of the traditional algorithm was 88.24%. Compared with traditional algorithms, this method performs better, with lower missed detection rate and higher sensitivity. Innovative combination of machine learning algorithm, through three-dimensional coordinate system, differentiation and vector sum formula, improves the accuracy and reliability of fall detection. In conclusion, the algorithm in this paper can effectively optimize the relevant performance of the system, thus improving the accuracy of the system’s fall detection.
Read full abstract