Radio observations from normal pulsars indicate that the coherent radio emission is excited by curvature radiation from charge bunches. In this review, we provide a systematic description of the various observational constraints on the radio emission mechanism. We have discussed the presence of highly polarized time samples where the polarization position angle follow two orthogonal well-defined tracks across the profile that closely match the rotating vector model in an identical manner. The observations also show the presence of circular polarization, with both the right and left handed circular polarization seen across the profile. Other constraints on the emission mechanism are provided by the detailed measurements of the spectral index variation across the profile window, where the central part of the profile, corresponding to the core component, has a steeper spectrum than the surrounding cones. Finally, the detailed measurements of the subpulse drifting behaviour can be explained by considering the presence of non-dipolar field on the stellar surface and the formation of the partially screened gap (PSG) above the polar cap region. The PSG gives rise to a non-stationary plasma flow that has a multi-component nature, consisting of highly energetic primary particles, secondary pair plasma, and iron ions discharged from the surface, with large fragmentation resulting in dense plasma clouds and lower-density inter-cloud regions. The physical properties of the outflowing plasma and the observational constraints lead us to consider coherent curvature radiation as the most viable explanation for the emission mechanism in normal pulsars, where propagation effects due to adiabatic walking and refraction are largely inconsequential.