Abstract

AbstractWe discuss how tidal interaction between the Large Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC), and the Galaxy triggers galaxy-wide star formation in the Clouds for the last ~0.2 Gyr based on our chemodynamical simulations on the Clouds. Our simulations demonstrate that the tidal interaction induces the formation of asymmetric spiral arms with high gas densities and consequently triggers star formation within the arms in the LMC. Star formation rate in the present LMC is significantly enhanced just above the eastern edge of the LMC's stellar bar owing to the tidal interaction. The location of the enhanced star formation is very similar to the observed location of 30 Doradus, which suggests that the formation of 30 Doradus is closely associated with the last Magellanic collision about 0.2 Gyr ago. The tidal interaction can dramatically compress gas initially within the outer part of the SMC so that new stars can be formed from the gas to become intergalactic young stars in the inter-Cloud region (e.g., the Magellanic Bridge). The metallicity distribution function of the newly formed stars in the Magellanic Bridge has a peak of [Fe/H] ~−0.8, which is significantly lower than the stellar metallicity of the SMC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call