Wideband multiple-input-multiple-output (MIMO) imaging radar can achieve high-resolution imaging with a specific multi-antenna structure. However, its imaging performance is severely affected by the array errors, including the inter-channel errors and the position errors of all the transmitting and receiving elements (TEs/REs). Conventional calibration methods are suitable for the narrow-band signal model, and cannot separate the element position errors from the array errors. This paper proposes a method for estimating and compensating the array errors of wideband MIMO imaging radar based on multiple prominent targets. Firstly, a high-precision target position estimation method is proposed to acquire the prominent targets’ positions without other equipment. Secondly, the inter-channel amplitude and delay errors are estimated by solving an equation-constrained least square problem. After this, the element position errors are estimated with the genetic algorithm to eliminate the spatial-variant error phase. Finally, the feasibility and correctness of this method are validated with both simulated and experimental datasets.
Read full abstract