Covalent organic frameworks (COFs) have attracted significant interest due to diverse applications, relying on their versatile molecular building blocks like fluorenes. However, the twisted structures of fluorenes pose substantial challenges for the construction of porous crystalline materials like COFs. Here, the couplings of 1,3,5-triformylphloroglucinol (Tp) with 9H-fluorene-2,7-diamine (DAF), 9,9-dimethyl-9H-fluorene-2,7-diamine (MFC) and 9,9-difluoro-9H-fluorene-2,7-diamine (FFC) with a pyrrolidine catalyst afford three fluorene-based COFs, TpDAF-COF, TpMFC-COF and TpFFC-COF, respectively. The resulting COFs, with distinct functional groups, exhibit high crystallinity and porosity. Optoelectronic tests reveal that TpFFC-COF demonstrates the most intense photocurrent density and the lowest interfacial charge transfer resistance. When applied to the selective aerobic oxidation of amines to imines, the efficiency follows the order of TpFFC-COF > TpMFC-COF > TpDAF-COF, consistent with the observed optoelectronic properties. Additionally, the TpFFC-COF photocatalyst showcases excellent reusability and broad applicability. This work illuminates the potential of engineering COFs with functional groups toward efficient photocatalysts.
Read full abstract