Abstract

The low efficiency of charge carrier separation is a major limitation hindering the application of photocatalytic technology. Constructing S-scheme heterojunction photocatalysts not only effectively promotes the separation of charge carriers, but also maximizes the oxidative and reductive capabilities of the two monomers. In this study S-scheme heterogeneous InVO4/Bi5O7I photocatalyst was synthesized by hydrothermal method combined with calcination. The optimal sample 20 % InVO4/Bi5O7I can completely deactivate Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in 30 min, remove 20 mg/L TC 76.0 % in 60 min and 20 mg/L BPA 93.0 % in 90 min. Intermediate products of TC and BPA degradation were detected using LC-MS, and possible degradation pathways were proposed. The photocurrent and electrochemical impedance spectroscopy (EIS) tests confirm that InVO4/Bi5O7I exhibits excellent photocurrent intensity and photocarrier migration ability, which are crucial reasons for the enhancement of the photocatalytic performance of the InVO4/Bi5O7I composite. Capture experiments indicate that OH, O2−, h+ and e−are reactive species. EPR further confirms the generation of OH and O2−. Combined with Kelvin probe force microscopy (KPFM) and band structure analysis, it is proposed that InVO4/Bi5O7I has an S-scheme charge transfer mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.