Background and purposeWhile patient-specific quality assurance (PSQA) has been integral to intensity-modulated treatments, its value is debated. A systems approach to safety is essential for understanding complex systems like radiation oncology but is often overlooked in PSQA research. This study aims to elucidate PSQA’s fundamental value and identify opportunities for enhancing safety in intensity-modulated treatments. Materials and MethodsFirst, causal scenarios that could lead to patient harm were identified using a prospective safety assessment technique developed for complex systems. Second, PSQA’s ability to mitigate these scenarios was evaluated using standard stability and control principles. The analysis also included safeguards related to PSQA, such as daily linac QA, equipment commissioning, and equipment design. ResultsTen causal scenarios were identified, highlighting well-known issues like flawed algorithms, data corruption, and hardware errors. Mitigation is achieved through advanced dose calculation and optimization algorithms, software and data integration, and preconfigured beam data, which improve decision-making and system state determination. Modern linac control systems enhance all aspects of system stability and control. Commissioning, daily linac QA, and PSQA are effective in enhancing the determination of system states only when feedback is non-overlapping and unambiguous. ConclusionGiven equipment improvement and related safeguards, the feedback generated from PSQA has diminished in value. To better complement other safeguards, PSQA should evolve to provide automated, unambiguous detection of any potential catastrophic treatment deviations prior to treatment. This evolution would allow physicists to focus on more critical aspects of patient care in radiation oncology.