The temporal luminescence behavior of silicon atoms during and after laser-heating of gas-borne silicon nanoparticles was investigated. Silicon nanoparticles were formed in the exhaust stream of a microwave plasma reactor at 100 mbar. The observed prompt atomic line intensities correspond with thermal excitation of the evaporated species. A prompt signal at 251.61 and 288.15 nm originating from the 3s23p2→3s23p4s transitions showed a lifetime of 16 ns that matches the documented excited-state lifetime for the respective transitions. A secondary delayed signal contribution with similar peak intensities was observed commencing approximately 100-300 ns after the laser pulse and persisting for hundreds of nanoseconds. This signal contribution is attributed to electron impact excitation or recombination after electron impact ionization of the silicon evaporated as a consequence of the laser heating of the plasma leading to non-thermal population of electronically excited silicon. The observations support a nanoparticle evaporation model that can be used to recover nanoparticle sizes from time-resolved LII data.
Read full abstract