Femtosecond extreme ultraviolet (XUV) light pulses play an important role in investigating the ultrafast dynamics of atoms and molecules, and are complementary to the conventional large facilities like synchrotron radiation and free electron laser. We build a table-top femtosecond extreme ultraviolet light source based on the high-order harmonic generation (HHG) process of gaseous medium in a strong laser field. We implement HHG by focusing an intense IR laser into a 5 cm long gas-filled hollow waveguide, instead of the conventional tightly focusing geometry with gas jet. Inside the waveguide, the laser peak intensity is nearly constant and the gas pressure is well-controlled, making it possible to maintain the phase matching condition over an extended distance. And a fully coherent high harmonic beam builds up along the waveguide, leading to a dramatically higher HHG efficiency. Monochromatic XUV light pulses are obtained by spectral selection of the HHG through employing the conical diffraction method of grating. With this geometry used, the pulse broadening caused by wave front tilting during the diffraction can be strongly suppressed, especially for the case of grazing incidence. And the femtosecond temporal character of the light pulse can be preserved while keeping a high reflectivity. The temporal broadening of the XUV light pulse in our setup is estimated to be within 100 femtosecond. By using different noble gases, photons with energy values ranging from 20 eV to 90 eV are produced. For the 27<sup>th</sup>-order harmonic centered at 41.9 eV, the flux is measured to be 1 × 10<sup>10</sup> photons per second, with an energy spread of 0.4 eV. In order to investigate the ultrafast dynamic behaviors of gaseous atoms and molecules with an HHG-based XUV source, we develop a reaction microscope with ultrahigh vacuum of about 10<sup>–11</sup> mbar. The combination of HHG-based XUV with the newly developed reaction microscope provides a unique tool for studying the XUV photon and atom/molecule interaction. A series of experiments has been successfully carried out on the platform and the system shows good performance.
Read full abstract