Abstract

We propose a transient interlayer compression in two-dimensional compound materials by using an intense IR laser resonant with the out-of-plane optical phonon mode (A(2u) mode). As a test case, we studied bilayer hexagonal boron nitride (h-BN), which is one of the compound layered materials. Excited state molecular dynamics calculations using time-dependent density functional theory show an 11.3% transient interlayer contraction of h-BN due to an interlayer dipole-dipole attraction of the laser-pumped A(2u) mode. These results are applicable to other layered compound materials. Such layered materials are a good material for nanospace chemistry, e.g., intercalating molecules and acting with them, and IR irradiation to contract the interlayer distance could provide a new route for chemical reactions under pressure. The duration of the contraction is at least 1 ps in the current simulation, which is observable by high-speed electron-beam diffraction measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.