Intelligent control algorithms have been extensively utilized for adaptive controller parameter adjustment. While the Particle Swarm Optimization (PSO) algorithm has several issues: slow convergence speed requiring a large number of iterations, a tendency to get trapped in local optima, and difficulty escaping from them. It is also sensitive to the distribution of the solution space, where uneven distribution can lead to inefficient contraction. On the other hand, the Beetle Antennae Search (BAS) algorithm is robust, precise, and has strong global search capabilities. However, its limitation lies in focusing on a single individual. As the number of iterations increases, the step size decays, causing it to get stuck in local extrema and preventing escape. Although setting a fixed or larger initial step size can avoid this, it results in poor stability. The PSO algorithm, which targets a population, can help the BAS algorithm increase diversity and address its deficiencies. Conversely, the characteristics of the BAS algorithm can aid the PSO algorithm in finding the optimal solution early in the optimization process, accelerating convergence. Therefore, considering the combination of BAS and PSO algorithms can leverage their respective advantages and enhance overall algorithm performance. This paper proposes an improved algorithm, W-K-BSO, which integrates the Beetle Antennae Search strategy into the local search phase of PSO. By leveraging chaotic mapping, the algorithm enhances population diversity and accelerates convergence speed. Additionally, the adoption of linearly decreasing inertia weight enhances algorithm performance, while the coordinated control of the contraction factor and inertia weight regulates global and local optimization performance. Furthermore, the influence of beetle antennae position increments on particles is incorporated, along with the establishment of new velocity update rules. Simulation experiments conducted on nine benchmark functions demonstrate that the W-K-BSO algorithm consistently exhibits strong optimization capabilities. It significantly improves the ability to escape local optima, convergence precision, and algorithm stability across various dimensions, with enhancements ranging from 7 to 9 orders of magnitude compared to the BAS algorithm. Application of the W-K-BSO algorithm to PID optimization for the Pointing and Tracking System (PTS) reduced system stabilization time by 28.5%, confirming the algorithm’s superiority and competitiveness.